NanoViricides Improves HIVCide Drug Candidate in Cell Culture Studies

Loading...
Loading...
NanoViricides, Inc.
NNVCD
(the "Company") reports that it has successfully improved upon its previous lead anti-HIV drug candidate, based on cell culture studies. An improved broad-spectrum anti-HIV nanoviricide that inhibited two distinctly different types of HIV-1 viruses equally well has been identified. This drug candidate also exhibited a very large therapeutic index. The Company has previously reported that it is optimizing the anti-HIV drug candidate. These cell culture studies were conducted by Southern Research Institute, Frederick, MD. The Company reports that it has identified an improved broad-spectrum anti-HIV ligand, based on the previous best ligand from the 2011 study. Also, both of these broad-spectrum ligands, when connected to a different backbone polymer than in the 2011 study, have shown substantially improved inhibition of two different types of HIV-1 virus in a standard cell culture study of virus neutralization and inhibition. HIV-1 Ba-L, a CCR5-using strain as well as HIV-1 IIIB, a CXCR4-using strain, were both inhibited equally well by these two different nanoviricide drug candidates in the standard MAGI HIV Antiviral Assay. The present cell culture data also showed that the two nanoviricides under study were safe to cells at far greater levels than the level needed for therapeutic effects. The Company has designed these anti-HIV ligands using reported gp120 protein structures of several HIV-1 strains in order to achieve broad-spectrum effectiveness. The HIV-1 gp120 protein binds to the human cell surface receptors CD4 and CCR5 or CXCR4 thereby enabling entry of the virus into the cell. The MAGI-R5 cells used in the current study express CD4 and both CXCR4 and CCR5 co-receptors. Different HIV-1 strains are known to use CD4 as a required receptor and, additionally, at least one of the CCR5 or CXCR4 (or both) as a co-receptor. The CCR5+ HIV strains generally transmit from human to human, whereas in the patient's body, over time, the CXCR4+ HIV strains dominate. Thus it is important to develop a drug that is effective against both of these types of HIV-1 viruses.
Loading...
Loading...
Market News and Data brought to you by Benzinga APIs
Posted In: NewsGuidance
Benzinga simplifies the market for smarter investing

Trade confidently with insights and alerts from analyst ratings, free reports and breaking news that affects the stocks you care about.

Join Now: Free!

Loading...