Market Overview

Sangamo BioSciences Announces Data from Trial of SB-728-T Shows Sustained Cut of Viral Load At or Below Detect Limit

Share:
Related SGMO
Sangamo BioSciences Restructuring Creates A Pipeline Gap, Merits 87% PT Decrease
Stocks Hitting 52-Week Lows
Spark Strengthens Case For Hemophilia Gene Therapy (Seeking Alpha)

 Sangamo BioSciences, Inc. (Nasdaq: SGMO) announced today the presentation of new data from its ongoing Phase 2 clinical trial (SB-728-902 Cohort 5) to evaluate  a single infusion of Sangamo's novel ZFP Therapeutic^®, SB-728-T, for the treatment of HIV/AIDS. The data demonstrate functional control of the virus at or below the limit of detection in CCR5 delta-32 heterozygote HIV-infected subjects treated with SB-728-T.  The abstract was selected as a "late-breaker" presentation at the 53^rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). On Wednesday, September 11, data were also presented demonstrating depletion of the HIV viral reservoir in SB-728-T treated subjects in cohorts 1-3 of the SB-728-902 study.

Data from the late-breaking presentation demonstrate that viral load (VL) became undetectable during a treatment interruption (TI) from antiretroviral therapy (ART) in three of seven evaluable CCR5 delta-32 heterozygote HIV-infected subjects, including two of six subjects that had completed TI in the ongoing SB-728-902 Cohort 5 study and an additional subject from an earlier Phase 1 clinical trial of SB-728-T.  In one SB-728-902 Cohort 5 subject, VL has remained undetectable (at or below the limits of quantification (LOQ) of the current ultra-sensitive assays for HIV) for seven weeks (to last measurement taken) and the TI is ongoing.  Reduction in VL from peak during TI showed a statistically significant correlation (p=0.015) with estimated numbers of engrafted ZFN modified cells (SB-728-T) in which both copies of the CCR5 gene had been disrupted (biallelic modification), in line with previously presented data from this program.

Posted-In: News FDA

 

Related Articles (SGMO)

View Comments and Join the Discussion!